Sepsis inhibits recycling and glutamate-stimulated export of ascorbate by astrocytes.

نویسندگان

  • John X Wilson
  • Magdalena Dragan
چکیده

Sepsis causes brain dysfunction. Because neurotransmission requires high ascorbate and low dehydroascorbic acid (DHAA) concentrations in brain extracellular fluid, the effect of septic insult on ascorbate recycling (i.e., uptake and reduction of DHAA) and export was investigated in primary rat and mouse astrocytes. DHAA raised intracellular ascorbate to physiological levels but extracellular ascorbate only slightly. Septic insult by lipopolysaccharide and interferon-gamma increased ascorbate recycling in astrocytes permeabilized with saponin but decreased it in those with intact plasma membrane. The decrease was due to inhibition of the glucose transporter (GLUT1) that translocates DHAA because septic insult slowed uptake of the nonmetabolizable GLUT1 substrate 3-O-methylglucose. Septic insult also abolished stimulation by glutamate of ascorbate export. Specific nitric oxide synthase (NOS) inhibitors and nNOS and iNOS deficiency failed to alter the effects of septic insult. Inhibitors of NADPH oxidase generally did not protect against septic insult, because only one of those tested (diphenylene iodonium) increased GLUT1 activity and ascorbate recycling. We conclude that astrocytes take up DHAA and use it to synthesize ascorbate that is exported in response to glutamate. This mechanism may provide the antioxidant on demand to neurons under normal conditions, but it is attenuated after septic insult.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of ascorbate on plasminogen activator inhibitor-1 expression and release from platelets and endothelial cells in an in-vitro model of sepsis.

The microcirculation during sepsis fails due to capillary plugging involving microthrombosis. We demonstrated that intravenous injection of ascorbate reduces this plugging, but the mechanism of this beneficial effect remains unclear. We hypothesize that ascorbate inhibits the release of the antifibrinolytic plasminogen activator inhibitor-1 (PAI-1) from endothelial cells and platelets during se...

متن کامل

A role for Na+/H+ exchangers and intracellular pH in regulating vitamin C-driven electron transport across the plasma membrane.

Ascorbate (vitamin C) is the major electron donor to a tPMET (transplasma membrane electron transport) system that was originally identified in human erythrocytes. This plasma membrane redox system appears to transfer electrons from intracellular ascorbate to extracellular oxidants (e.g. non-transferrin-bound iron). Although this phenomenon has been observed in nucleated cells, its mechanism an...

متن کامل

Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice.

Inducible nitric oxide synthase (iNOS) expression in blood vessels contributes to the vascular hyporeactivity characteristic of sepsis. Our previous work demonstrated in vitro that ascorbate inhibits iNOS expression in lipopolysaccharide- and interferon-gamma-stimulated skeletal muscle endothelial cells (ECs) through an antioxidant mechanism. The present study evaluated in vivo the hypothesis t...

متن کامل

Inhibition of astrocyte glutamate uptake by reactive oxygen species: role of antioxidant enzymes.

BACKGROUND The recent literature suggests that free radicals and reactive oxygen species may account for many pathologies, including those of the nervous system. MATERIALS AND METHODS The influence of various reactive oxygen species on the rate of glutamate uptake by astrocytes was investigated on monolayers of primary cultures of mouse cortical astrocytes. RESULTS Hydrogen peroxide and per...

متن کامل

Glutamate controls tPA recycling by astrocytes, which in turn influences glutamatergic signals.

Tissue-type plasminogen activator (tPA) regulates physiological processes in the brain, such as learning and memory, and plays a critical role in neuronal survival and neuroinflammation in pathological conditions. Here we demonstrate, by combining mouse in vitro and in vivo data, that tPA is an important element of the cross talk between neurons and astrocytes. The data show that tPA released b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Free radical biology & medicine

دوره 39 8  شماره 

صفحات  -

تاریخ انتشار 2005